

АFМ[®] Активированный Фильтрующий Материал

Результаты независимых испытаний, январь 2014*

В докладе обобщены результаты испытаний материала AFM®, производства компании «Драйден Аква», кварцевого песка и имеющихся на рынке фильтрующих материалов из стекла. Все испытания проводил институт IFTS (Institut de la Filtration et des Techniques Séparatives www.ifts-sls.com) во Франции, который признан одной из ведущих независимых уполномоченных лабораторий в мире по вопросам материалов для фильтрации воды.

AFM® - это высокотехнологичный фильтрующий материал, сырьем для изготовления которого служит зеленая стеклянная тара.

Обзор данных

Три факторы играют важную роль для наполнителя фильтра:

- 1. Механическая фильтрация
- 2. Реакции адсорбции
- 3. Эффективность коагуляции и флокуляции

Данный отчет имеет отношение только к производительности механической фильтрации. Тесты проводились на чистых материалах. Известно, что песок и неактивированное толченое стекло становятся биофильтром в течение нескольких месяцев. Бактерии негативно влияют на механическую производительность фильтрации и способствуют образованию каналов в наполнителе фильтра. В случае с AFM® такие явления, как образование комков и каналов, не происходят.

Материалы для тестирования

Были протестированы следующие продукты:

- АFM® производства «Драйден Аква», Шотландия
- Кварцевый песок из Leighton Buzzard, Англия
- Garofiltre измельченный стеклянный материал, Франция
- EGFM измельченный стеклянный материал производства DMS, полученный методом имплозии, Англия
- Віота измельченный стеклянный материал, Испания
- Vitrosphere сферические круглые шарики, Германия
- Astral измельченный стеклянный материал, Испания

*Тесты проведены институтом IFTS: www.ifts-sls.com

Тест 1: Эффективность удаления и размер частиц

AFM® удаляет 80 % всех частиц в воде размером до 4,5 мкм. Лучший результат очистки, который может дать высококачественный песок - 8 мкм. Результаты были получены на фильтрах, работающих на скорости фильтрации 20 м/ч без флокуляции. Поэтому результаты дают прямое сравнение различных фильтрующих материалов.

Химия стекла, форма частиц и особенно процесс активации придают AFM® важные свойства, явно превосходящие песок и стеклянный песок как наполнители фильтра. Большая поверхность частиц имеет сильный отрицательный заряд для адсорбции органических веществ и мелких частиц. Поверхность также имеет катализаторы в виде оксидов металлов, которые производят свободные радикалы и, таким образом, высокий окислительно-восстановительный потенциал (redox). Поэтому AFM® самодезинфицируется. AFM® предотвращает образование колоний бактерий и является уникальным, биоустойчивым материалом для фильтра.

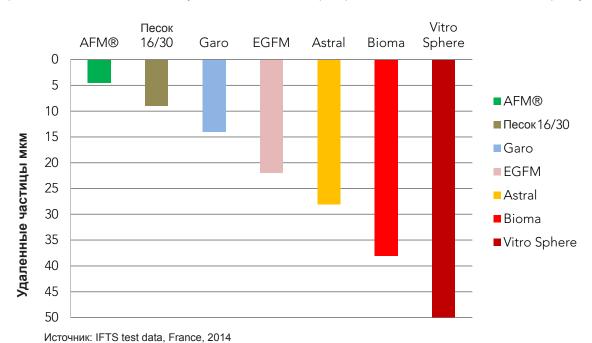


График 1: мельчайшие частицы, удаленные на 80 % при производительности 20 м/ч и без флокуляции

Выводы об эффективности наполнителя фильтра, применительно к размерам 5 мкм и скорости 20 м/ч

		AFM®	Песок 16/30	Garo	Astral	Bioma	EGFM	Vitro- sphere
Эффективность при 5 мкм, Удалено в %	Начало %	76.78	55.30	77.51	79.91	39.02	76.65	49.00
	Финал %	82.40	74.85	63.97	39.04	3.70	53.70	0.00
	В среднем %	81.30	72.97	65.61	49.35	7.45	58.03	0.05
Дифференциальное давление	Начало mbar	155.00	149.00	88.00	124.00	111.00	222.00	121.00
	Финал mbar	934.00	891.00	808.00	550.00	511.00	934.00	123.00
Введенные частицы	Граммы	109.00	133.00	266.00	209.00	400.00	109.00	201.00

Источник: IFTS test data, France, 2014

Комментарии

AFM® и песок оказались наиболее эффективными, так как ни один из других материалов не смог достичь на финальной стадии высокого результата испытательного давления из-за прорыва удерживаемых твердых частиц. AFM® также стал лучшим по среднему и финальному показателю производительности фильтрации частиц в 5 микрон при фильтрации со скоростью 20 м/ч. Тесты были проведены в неочищенной воде.

Тест 2: Дифференциальное давление и введенные частицы

Специальные частицы ISO СТD были введены в воду, чтобы протестировать способность материала удалять частицы из воды. По мере удаления частиц из суспензии давление в фильтре должно было постепенно увеличиваться – до включения блокировки. Отмечено, что заблокировались только фильтры с наполнителями в виде AFM® и песка, все остальные материалы позволили частицам прорваться через наполнитель фильтра и вернуться в воду.

Способность удерживать частицы – это очень важный момент в любой системе фильтрации. В питьевой воде и в системах бассейнов, где крипто-споридии представляют собой большой риск заболеваний, фильтры должны быть устойчивы и способны удерживать паразитов. Песок и AFM® были единственными материалами, создавшими устойчивый барьер фильтрации.

График 2: Дифференциальное давление и введенные частицы

Источник: IFTS test data, France, 2014

Тест 3: Эффективность обратной промывки

Измерялось количество материалов, высвобождаемых с течением времени применительно к каждому наполнителю. Графические данные по обратной промывке подтверждают, что эффективность промывки в случае как песка, так и AFM $^{\circ}$ достигла 97 %. Ближайшие позиции заняли стекло Garofiltre 93 %, далее следуют Astral 92 % и EGFM 88 %.

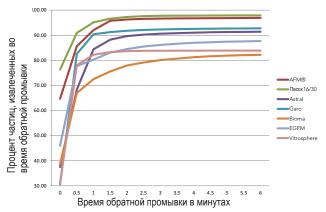

Все то, что попадает в фильтр, должно выходить обратно, а если это не происходит, то находящиеся там органические вещества подвергаются бактериальному метаболизму и, возможно, наполнитель фильтра будет био-коагулировать из-за накопления альгинатов, выделяемых бактериями, и из-за минерализованного слоя биопленки.

График 4 показывает количество твердых веществ, удаляемых из наполнителя фильтра во время обратной промывки.

Обратная промывка для AFM® изображена воспроизводимой и предсказуемой синусоидальной кривой. Песок представлен неровным и непредсказуемым профилем. Если измерить площадь ниже кривой, то подтверждается, что при равных условиях из фильтра с AFM® было извлечено на 30 % больше твердых веществ по сравнению с песчаным фильтром.

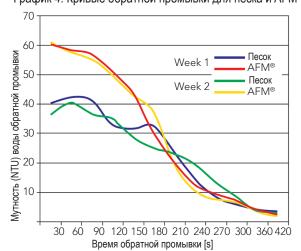

Опыт показывает, что эффективность обратной промывки с AFM® является устойчивой, в то время как биоаккумуляция приводит к ухудшению производительности других материалов для наполнителя фильтров. Это влияет как на производительность, так и на текущие расходы, поскольку требуется все больше воды даже для неполной обратной промывки других наполнителей для фильтра.

График 3: Эффективность обратной промывки

Источник: IFTS test data, France, 2014

График 4: Кривые обратной промывки для песка и AFM®

Источник: Lyonnais des Eaux

Результаты обсуждений

Ключевые моменты

- AFM® показал результаты, которые в два раза лучше, чем у ближайшего продукта из измельченного стекла, и на 40% лучше песка самого высшего качества (см. график 1 и таблицу на стр. 2)
- Песок показал себя лучше всех остальных материалов из стекла (см. график 1 и таблицу на стр. 2)
- Все продукты из измельченного стекла не прошли специальный тест на удержание введенных частиц, что привело к выбросу нефильтрованного материала обратно в воду и не способствовало созданию эффективной преграды для, например, криптоспоридий, паразитов, бактерий и органических веществ (см. график 2)
- Ни один из протестированных продуктов из стекла не обеспечил обратную промывку в течение 6 минут, самый лучший продукт по-прежнему сохранял 8 % твердых веществ, а самый худший 20%. Это приводит к значительному увеличению потребления воды для обратной промывки и потребности в хлоре ввиду удержанного количества органических веществ (см. график 3)

Заключение

Результаты теста показывают преимущества AFM® над всеми другими испытанными материалами для фильтра. AFM® явно эффективнее высококачественного кварцевого песка и любого другого материала из стекла для фильтра. Потребность в хлоре в соответствующих системах и образование побочных продуктов дезинфекции напрямую зависят от эффективности фильтрации и обратной промывки. Представленные данные подтверждают значительное преимущество в производительности при использовании AFM® по сравнению с песком и любым другим фильтрующим материалом из стекла

Дополнительная информация: что такое активация AFM®?

Активация AFM® представляет собой защищенный патентом 3-х этапный процесс, в ходе которого структура поверхности стекла меняется на молекулярном уровне. Стекло – это алюмосиликат, в процессе активации используются уже имеющиеся свойства зеленого стекла, поэтому компания «Драйден Аква» использует только зеленую стеклянную тару. Кроме того, производственный процесс усиливает свойства стекла путем:

- 1. Повышения его каталитических свойств
- 2. Контроля плотности заряда на его поверхности
- 3. Увеличения площади его поверхности
- 4. Контроля выборочной молекулярной структуры поверхности

Электрохимическая адсорбция, адсорбция молекулярного сита и воздействие коагуляции и флокуляции на производительность будут рассмотрены в дополнительных докладах в ближайшее время.

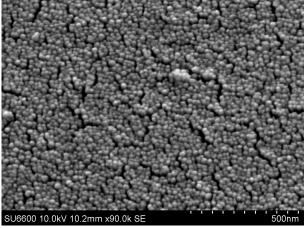


Фото 1: поверхность AFM® (500 nm)

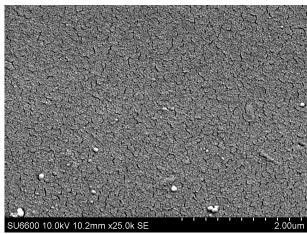


Фото 2: поверхность AFM® (2.0 µm)